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Correlation, relativistic and adiabatic corrections are computed for the electronic ground
state of the hydrogen molecule for r ≤ 12 a.u. In contrast to previous calculations (based on
the numerical solution of the Schrödinger equation, mainly done by Wolniewicz et al.), our
results are based on the ordinary ab initio treatment using a four-component wave function
with fully relativistically reoptimized basis sets and adiabatic corrections by the treatment
developed in our laboratory. The calculated energies are fitted to the polynomial/exponen-
tial analytical function and the evaluated spectroscopic parameters are compared with those
obtained in the same manner from the Wolniewicz data. The results presented show a good
agreement with exact numerical calculations published previously.
Key words: Relativistic corrections; Adiabatic corrections; Hydrogen; Ab initio calculations;
Wave function; Potential energy curve.

The accurate potential energy curve for the ground state of the hydrogen
molecule computed 40 years ago by Kolos and Roothaan1 has been im-
proved several times for various regions of the internuclear distance by the
Wolniewicz group2–6 using a very general expansion of the wave function.
All recent calculations trying to account for the relativistic and adiabatic
corrections were based on the very general multiterm form of the
variational wave function and the subsequent numerical solution of the
Schrödinger equation. They showed that the inclusions of both relativistic
and adiabatic corrections are of great importance for a reasonable agree-
ment with experimental data.

This work was undertaken in order to evaluate the correlation, relativistic
and adiabatic corrections to the ground state potential energy curve of the
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hydrogen molecule with an accuracy comparable with the Wolniewicz nu-
merical results5, and strictly based on the ordinary ab initio treatment with
Gaussian basis set expansion of the wave function. The potential energy
curve has been evaluated for the same internuclear distance region as re-
ported by Wolniewicz5.

THEORETICAL

Relativistic corrections have been calculated by solving the Dirac–Hartree–
Fock equations with a four-component wave function7–9 based on the
Gaussian basis set expansion with fully relativistic reoptimized expansion
coefficients and exponents10. It has been shown10 that the use of original
nonrelativistic basis sets (exponents as well as expansion coefficients) may
lead to incorrect results even if additional primitives with larger exponents
are added. This solution has been used for the following inclusion of corre-
lation effects. As the hydrogen molecule contains two electrons only, the
SD-CI expansion provides full CI results. All relativistic and CI calculations
were performed using the four-component molecular relativistic package
MOLFDIR (ref.11).

The hydrogen basis set adopted in all the presented relativistic calcula-
tions was obtained by the optimization procedure using the numerical
atomic relativistic program package GRASP (ref.12). More details about this
optimization method can be found in ref.10. In order to obtain the basis
sets sufficiently large and costly appropriate, we first optimized the primi-
tive Gaussian basis sets exponents using the stochastic optimization treat-
ment and then refined them by the ordinary gradient energy-functional
based procedure, adopting the Gaussian sphere model for the nucleus. We
optimized 10s primitive Gaussian functions for neutral H atom. Then, addi-
tional functions with higher angular momenta (p, d, f) have been added.
Since the relativistic effects influence mainly the electrons near the nu-
cleus, we used the original nonrelativistic basis set for describe higher angu-
lar momenta p, d, f. These additional functions were used as uncontracted.
The final basis set used was of 10s5p4d1f quality (Table I). The primitive ba-
sis sets for small components of the Dirac wave functions were generated
by the kinetic balance. The relativistic contraction scheme used in our cal-
culations is presented in Table I.

In our previous paper13 dealing with the calculation of adiabatic correc-
tions, we showed that the Born–Handy formula14,15, accounting for the adi-
abatic corrections to the energy, can be reformulated at the level of the
routinely used coupled perturbed Hartree–Fock (CPHF) method16, and ex-
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pressed over the derivatives of the expansion coefficients in a compact
form. This enables us to decompose the adiabatic correction into the parts
associated with the vibrational and rotational/translational components of
the nuclear motion. This procedure was actually used here for an approxi-
mate inclusion of adiabatic corrections to the ground state energies. Be-

Collect. Czech. Chem. Commun. (Vol. 65) (2000)

Ground State Potential Curve 1389

TABLE I
Exponents and coefficients of relativistic hydrogen Gaussian basis functions

Function Orbital Exponent Coefficient

s 1 1 683.122107 0.000046931

251.284883 0.000364777

57.353057 0.001900121

16.339164 0.007867807

5.3694243 0.027584960

1.9509730 0.082718485

0.7655929 0.203094564

0.3191116 0.361535575

0.1389537 0.355963414

0.0611333 0.103814608

2 1.9509730 1.0

3 0.7655929 1.0

4 0.3191116 1.0

5 0.1389537 1.0

6 0.0611333 1.0

p 1 8.6490000 1.0

2 3.4300000 1.0

3 1.3600000 1.0

4 0.5390000 1.0

5 0.2140000 1.0

d 1 4.4530000 1.0

2 1.9580000 1.0

3 0.8610000 1.0

4 0.3780000 1.0

f 1 1.2000000 1.0



cause of the small magnitude of these corrections (tenths and hundredths
of cm–1), we calculated the adiabatic corrections within the nonrelativistic
ground state wave function (by our estimations, the error in comparison
with the use of the relativistic ground state wave function should be less
than 1%).

The quality of the computed energies has been examined by the rigorous
least square fit17 to the analytical function of the following form
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where ζ = (r – re)/r . (1)

Such a form of the potential energy function obeys all the necessary limit
physical conditions18. The spectroscopic parameters (re, ωe, ωexe, Be, α, De)
were obtained from the derivatives of the function (1) in the minimum.

RESULTS AND DISCUSSION

The total energy Etot (including relativistic, correlation and adiabatic correc-
tions), total energy without adiabatic correction EDHF+SDCI (relativistic DHF
energy with SDCI correlation energy contribution), ∆Erel (net relativistic
correction), ∆Ead (net adiabatic correction) and ∆EW (absolute difference be-
tween our and Wolniewicz energies) are listed in Table II. The net relativis-
tic corrections ∆Erel were obtained as the differences between relativistic
and nonrelativistic energies (obtained with the same relativistic DHF code
applying the condition for the speed of light c → ∞ and with the same
Gaussian basic set). For the sake of simplicity, we used the same inter-
nuclear distances as reported by Wolniewicz5. Even though we used only
a moderate Gaussian basis set for the hydrogen atoms, one can see from
Table II that our DHF SCF energies corrected for the correlation and adia-
batic effects show satisfactory agreement with data of Wolniewicz5. The ab-
solute mean error is approximately 0.6 mhartrree. One can also compare
individual corrections to the total energy (relativistic and/or adiabatic).

The quality of the calculated hydrogen potential energy curve can be
demonstrated by the calculation of spectroscopic parameters. Since they de-
pend on the higher derivatives of the potential energy function, they are
very sensitive to the shape of the curve. All calculated spectroscopic param-
eters are listed in Table III. For comparison, the experimental data19 are also
presented. Spectroscopic parameters for the Wolniewicz energies5 have
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been obtained in the same manner as for our potential energy curve. Be-
cause we restricted ourselves to the spectroscopic parameters containing at
most the fourth derivative of energy (first anharmonic constant ωexe), also
a comparison of spectroscopic parameters for the best numerical values of
Wolniewicz5 with the experimental parameters shows small differences.
The importance of the adiabatic correction is readily seen from Table III. Its
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TABLE II
Total DHF + SDCI energies (EDHF+SDCI), relativistic corrections (∆Erel), adiabatic corrections
(∆Ead), total corrected energies (Etot = EDHF+SDCI + ∆Ead), and the differences between our and
Wolniewicz’s numerical results5 (∆Ew). All values in a.u.

r EDHF+SDCI ∆Erel·105 ∆Erel·105

Ref.5
∆Ead·104 ∆Ead·104

Ref.5
Etot ∆Ew·104

Ref.5

0.90 –1.08311910 –2.510 –1.687 5.993 6.244 –1.08251985 –5.158

1.00 –1.12401839 –2.195 –1.500 5.724 5.985 –1.12344597 –5.102

1.10 –1.14953708 –1.942 –1.357 5.482 5.755 –1.14898887 –5.065

1.20 –1.16441449 –1.739 –1.246 5.264 5.552 –1.16388806 –5.044

1.30 –1.17182485 –1.572 –1.161 5.069 5.375 –1.17131797 –5.032

1.35 –1.17344045 –1.501 –1.126 4.979 5.295 –1.17294258 –5.028

1.40 –1.17395150 –1.436 –1.096 4.893 5.221 –1.17346215 –5.024

1.45 –1.17353203 –1.377 –1.069 4.813 5.152 –1.17305075 –5.017

1.50 –1.17232947 –1.323 –1.045 4.736 5.089 –1.17185582 –5.008

1.60 –1.16805734 –1.229 –1.006 4.596 4.976 –1.16759774 –4.981

1.70 –1.16193304 –1.151 –0.977 4.470 4.881 –1.16148601 –4.943

1.80 –1.15454410 –1.085 –0.955 4.358 4.804 –1.15410831 –4.895

2.00 –1.13761583 –0.981 –0.931 4.168 4.696 –1.13719907 –4.736

2.20 –1.11962400 –0.906 –0.926 4.016 4.643 –1.11922239 –4.547

3.00 –1.05690765 –0.761 –1.015 3.674 4.831 –1.05654020 –3.131

5.00 –1.00367734 –0.740 –1.291 3.620 5.410 –1.00331530 0.577

6.00 –1.00079081 –0.764 –1.320 3.710 5.437 –1.00041978 1.146

8.00 –1.00005376 –0.803 –1.330 3.856 5.445 –0.99966818 1.438

10.00 –1.00001669 –0.822 –1.331 3.933 5.446 –0.99962337 1.459

12.00 –1.00001259 –0.830 –1.331 3.966 5.446 –0.99961597 1.447



inclusion in both our and Wolniewicz data represents roughly the same ef-
fect, so that the absolute error of harmonic frequency is less than 1 cm–1.
The discrepancy in the dissociation energy can be partly explained by the
fact we approximated the energy E(r → ∞) by the last tabulated value in the
Wolniewicz paper5 E(r = 12 a.u.). Although it seems theoretically unjusti-
fied, we used this assumption in order to minimize the errors in the process
of interpretation of our results. For the Wolniewicz data, this makes the ab-
solute error of 7 · 10–4 eV (6 cm–1). The worst estimated parameter obtained
from our hydrogen potential energy curve is the dissociation energy (about
0.016 eV less than the experimental value). The origin of this discrepancy
lies in the fact we used insufficient expansion of the Gaussian basis func-
tions but the procedure used for estimation of dissociation energy may also
play a certain role.

CONCLUSIONS

The aim of this study was to compare the precise four-component relativis-
tic ab initio calculation of the ground-state potential energy of the hydro-
gen molecule including the correlation and adiabatic corrections with the
best numerical data. Hydrogen molecule was used since, as the best theoret-
ically described molecular system, it plays an important role as a testing
ground for many theoretical and experimental methods. Our ambitions
were not to reproduce comprehensively the best theoretical results, but to
show that it is also possible to approach them satisfactorily in the frame-
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TABLE III
Calculated and experimental spectroscopic parameters

Quantity This papera Wolniewicza,b This paperc Wolniewiczb,c Experimentd

re⋅1010, m 0.74141 0.74143 0.74165 0.74163 0.74144

ωe, cm–1 4 403.70 4 403.50 4 401.40 4 401.89 4 401.21

ωeχe, cm–1 121.89 121.60 121.83 121.49 121.33

Be, cm–1 60.854 60.851 60.816 60.818 60.853

αe, cm–1 3.037 3.032 3.034 3.029 3.062

De⋅104, cm–1 4.65 4.65 4.64 4.64 4.71

D0
0, eV 4.4625 4.4767 4.4613 4.4774 4.4781

a Without adiabatic corrections; b ref.5; c including adiabatic corrections; d ref.19.



work of the HF treatment with the Gaussian basis set expansion. The results
fulfilled our expectations, showing a sufficient agreement with the best nu-
merical data available in literature. For a better agreement it will be the sub-
ject of some experimentation to adopt larger basis set expansions and a
more sophisticated procedure for estimation of the dissociation energy.
However, investigations of the Polish group20–23 showed that the use of ex-
plicitly correlated Gaussian functions as a basis set for a better agreement
with the Wolniewicz data is desirable.
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